BME Capacitor Risk Management

Douglas J. Sheldon
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology,
Under contract with the National Aeronautics and Space Administration (NASA)

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.
Managing risk always involves managing the entire reliability lifetime of a device:

- **Early life:** Screening
- **Useful life:** Low levels of defects
- **End of life:** Physics of Failure
BMEs and FPGAs

Our goal is to manage the risk of using Xilinx Virtex 4 and 5 FPGAs made with BME capacitors
AVX BME Caps used on Xilinx FPGAs - Optical
AVX BME Caps used on Xilinx FPGAs - SEM
Multilayer ceramic capacitor (MLCC)
- Alternating layers of dielectric and electrode
- Used throughout electronics industry

Historically these type of capacitors used PME = Precious Metal Electrodes (usually palladium).

Pd prices jumped from $100/ounce to $1500/ounce in 1990’s.
- Also demand for cheap electronics drove capacitor prices down.

BME = Base Metal Electrode (usually nickel) developed as cost and performance solution
What about the dielectric?

- MLCC dielectric of choice for both PME and BME is BaTiO$_3$
 - High melting point: 1625° C (good for stable manufacturing)
 - Ferroelectric: High dielectric constant ~3000 (helps volumetric efficiency)
 - Perovskite structure: allows for many dopants/stoichiometry to customize thermal, electrical, manufacturing and reliability performance

- **Changing electrodes but keeping the dielectric the same requires a change to the manufacturing processing.**

- **PME** were sintered/fired in air atmosphere
 - Pd Electrodes will not oxidize
 - Produces favorable electrical properties

- **BME** must be sintered in reducing (i.e. vacuum, forming gas) atmosphere
 - Ni Electrodes will oxidize in air
 - Interface capacitance will dominate performance
 - Dielectric turns to semiconductor

- **No free oxygen/reduction atmosphere => oxygen vacancies in dielectric film**
 - Degrades internal resistance and long term reliability

- **Additional dopants must be added and new re-oxidation process added to BME to address oxygen vacancies.**
Examples of Oxygen Vacancies in BaTiO$_3$

- Intermediate ionic radius rare-earth (Dy, Ho, Er) show smaller aging rates than large radius (La, Sm, Gd)
- DC bias drives oxygen vacancies to cathode/ceramic interface
 - Degrades insulation resistance
BME Performance Concerns

Variation among vendors (same 16V/1uF capacitor)

Logarithmic degradation over time.

\[\frac{C(t)}{C(0)} = 1 - k \log(t) \]

15 year missions could have 20 decades of operation => final value is ~35% of t=0 value

Novak DesignCon 2011
• **Insulation Resistance = applied voltage/leakage current**

• **As time increases, electromigration of oxygen vacancies from core to interface across grain boundaries**
 – Decreases resistivity
 – Tunneling current through grain boundaries

• **Pile up of oxygen vacancies finally decreases resistivity to critical level**
Manage Risk with Likelihood and Consequence Matrix

Table:

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>>50%</td>
</tr>
<tr>
<td>4</td>
<td>>10%</td>
</tr>
<tr>
<td>3</td>
<td>>1%</td>
</tr>
<tr>
<td>2</td>
<td>>0.1%</td>
</tr>
<tr>
<td>1</td>
<td><0.1%</td>
</tr>
</tbody>
</table>

Consequence:

- **Minimal degradation, circuit performance not affected**
- **Parametric degradation, degraded circuit performance**
- **Part Failure, circuit failure. Mitigation scheme to restore**
- **Part failure/circuit failure. No mitigation scheme**
- **Part Failure/Circuit Failure. Failure of adjacent circuits**

Likelihood:

- Minimal degradation, circuit performance not affected
- Parametric degradation, degraded circuit performance
- Part Failure, circuit failure. Mitigation scheme to restore
- Part failure/circuit failure. No mitigation scheme
- Part Failure/Circuit Failure. Failure of adjacent circuits

Consequence:

- 1
- 2
- 3
- 4
- 5
Determine Capacitor & System Reliability Requirements

Capacitor System Reliability = Component Reliability^# of capacitors

<table>
<thead>
<tr>
<th># of caps</th>
<th>Capacitor Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9900 0.9990 0.9999 1.0000</td>
</tr>
<tr>
<td>5</td>
<td>0.9510 0.9950 0.9995 1.0000</td>
</tr>
<tr>
<td>10</td>
<td>0.9044 0.9900 0.9990 0.9999</td>
</tr>
<tr>
<td>15</td>
<td>0.8601 0.9851 0.9985 0.9999</td>
</tr>
<tr>
<td>20</td>
<td>0.8179 0.9802 0.9980 0.9998</td>
</tr>
<tr>
<td>25</td>
<td>0.7778 0.9753 0.9975 0.9998</td>
</tr>
<tr>
<td>30</td>
<td>0.7397 0.9704 0.9970 0.9997</td>
</tr>
</tbody>
</table>

JPL needs capacitors with 4 to 5 9’s reliability at the END of mission life to have a low likelihood rating.
Sample Size Requirements

Percent Defective (ppm) vs Sample Size vs Confidence Limit

Current life test have sample size variation

<table>
<thead>
<tr>
<th>Xilinx Part #</th>
<th>Cap Size</th>
<th>Life Test Voltage (V)</th>
<th>Total</th>
<th>Fails (0 to 2000 hr)</th>
<th>Fails (2000 to 4000 hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCC0013</td>
<td>0508</td>
<td>6</td>
<td>259</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BCC0014</td>
<td>0508</td>
<td>9.45</td>
<td>138</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BCC0019</td>
<td>0306</td>
<td>6</td>
<td>91</td>
<td>2*</td>
<td>0</td>
</tr>
</tbody>
</table>
COTS FIT Rates

Mission Assurance Office

Section 514

USA / El Salvador / Malaysia

RELIABILITY ENGINEERING

QUARTERLY RELIABILITY SUMMARY

1st QUARTER 2011

PRODUCT: MULTILAYER CERAMIC CAPACITORS

TEST CONDITIONS: 2X-RATED VOLTAGE DC MINIMUM
MAXIMUM RATED TEMPERATURE

<table>
<thead>
<tr>
<th>DIELECTRIC GROUP</th>
<th>LOTS TESTED</th>
<th>PIECES TESTED</th>
<th>DEVICE HOURS</th>
<th>EQUIVALENT DEVICE HRS</th>
<th>FAILURE RATE (1/1)</th>
<th>EQUIVALENT DEVICE HRS</th>
<th>FAILURE RATE (1/1)</th>
<th>FAILURE RATE FITS - (2/1)</th>
<th>MTBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPO/COG</td>
<td>230</td>
<td>29170</td>
<td>2.87 x 10^6</td>
<td>2.30 x 10^7</td>
<td>0.010</td>
<td>1.84 x 10^11</td>
<td>1.25 x 10^-6</td>
<td>0.013</td>
<td>7.99 x 10^10</td>
</tr>
<tr>
<td>X7R</td>
<td>659</td>
<td>104191</td>
<td>1.21 x 10^7</td>
<td>9.64 x 10^7</td>
<td>0.013</td>
<td>7.71 x 10^11</td>
<td>1.68 x 10^-6</td>
<td>0.017</td>
<td>5.94 x 10^10</td>
</tr>
<tr>
<td>X5R</td>
<td>26</td>
<td>3008</td>
<td>2.89 x 10^5</td>
<td>2.31 x 10^6</td>
<td>0.100</td>
<td>1.04 x 10^9</td>
<td>2.22 x 10^-4</td>
<td>2.216</td>
<td>4.51 x 10^8</td>
</tr>
</tbody>
</table>

NOTES:

1/ Failure Rates are calculated in Percent Per 1000 Hours at 90% Confidence Level
2/ 1 FIT = 1 Failure in 10^9 Hours (PPM per 1000 Hours) at 90% Confidence Level

<table>
<thead>
<tr>
<th>Hours</th>
<th>0.1</th>
<th>1</th>
<th>10</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.99999</td>
</tr>
<tr>
<td>1000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.99999</td>
<td>0.99990</td>
</tr>
<tr>
<td>8760</td>
<td>1.0000</td>
<td>0.99999</td>
<td>0.99991</td>
<td>0.99912</td>
</tr>
<tr>
<td>43800</td>
<td>1.0000</td>
<td>0.99996</td>
<td>0.99956</td>
<td>0.99563</td>
</tr>
<tr>
<td>87600</td>
<td>0.99999</td>
<td>0.99991</td>
<td>0.99912</td>
<td>0.99128</td>
</tr>
<tr>
<td>131400</td>
<td>0.99999</td>
<td>0.99987</td>
<td>0.99869</td>
<td>0.98695</td>
</tr>
</tbody>
</table>

- **COTS AVX data shows strong dependence on dielectric.**
- **Space dielectric does not have this large database to leverage.**
Life Test Requirements

\[\frac{t}{t_0} = \left[\frac{V}{V_0} \right]^n e^{\left(\frac{E_a}{k} \left(\frac{1}{T} - \frac{1}{T_0} \right) \right)} \]

- \(T_0 \) and \(V_0 \) are life test conditions
- \(T \) and \(V \) are mission conditions
- \(t = \text{mission life}, t_0 = \text{life test duration} \)
- \(E_a = 1.03 \) and \(n = 4.6 \)

Hours of 125C Life Test Required to Ensure 10 yrs of life at 3.4V for Various Temperatures & Voltage

- **4V**
- **6V**
- **Xilinx Life Test**
IR Degradation Life Test Analysis

1.00E+06 1.00E+07 1.00E+08 1.00E+09 1.00E+10

Insulation resistance (Ohms)

Hours of Operations (Arbitrary)

Life Test I - 20 to 50% degradation region (unknown effect on AC device performance)

Life Test II – 100X to 1000X degradation region. FPGA is expected to fail due to high current conditions
Life Test Predictions for Operational Conditions
FPGA Power Distribution Network

- High speed (>100MHz) operation requires sophisticated signal integrity management
- Maintain low impedance path from FPGA to supply through die, package, and PCB.
 - Different regions have frequency response ranges
 - Compensate for large swings in current until Vsupply can respond
- BME caps on FPGA
 - Power/GND plane decoupling
 - Filtering
 - Series DC blocking for Gbit/sec links
- **What happens to PDN when BME degrades?**
Effect of ESL Change on 0306

Mission Assurance Office
Section 514

C = 1.0 μF, ESR = 0.004 ohm, L = 1, 35, 100 pH

\[Z_C = R + j \left(\omega L - \frac{1}{\omega C} \right) = \text{Re}\{Z_C\} + j \text{Im}\{Z_C\} = R + jX \]

Istavan novak
Summary

• Integrate reliability function of BME into FPGA reliability function with risk matrix.
• Significant sample size required to resolve acceptable levels of defects.
• Long term (> 1khrs) needed to cover long term high temperature mission operation.
• HAST/HALT data needed on exact space BME caps for operational predictions.
• Electric field based specifications are required to advance BMEs for general purpose use.
• Impact of the electrical degradation of the BME cap on FPGA performance is required portion of overall risk plan.