GaN HEMT Reliability: An Assessment of the Open Literature

11 Dec 2012

Eric Heller
Physicist
AFRL/RXAN
Air Force Research Laboratory
Outline

• Motivation
• Survey of “Pathologies”
• How are “Pathologies” accelerated
• Gaps and Some Paths Forward
• Conclusions

For this discussion:
 ➢ Open literature only!
 ➢ Radiation effects and package level reliability out of scope.
 ➢ NOT a final product with industry buy-in
Motivation

• From Don’s talk: *Lifetime assessment* is key to successful transition (especially for DoD)
• Academic community has said, done, and published much on *degradation and failure findings & physics*. There are *new* and *enhanced* stressors/drivers in GaN vs. legacy materials: Some of this is relevant!

A simplified view of cultural drivers

Academic:
- Find the **novel**
- Publish the **outcome**
- Move on

Industry:
- Eliminate/mitigate **relevant** flaws quickly
- Not publish but **retaining full** qual “**recipe**”
- Sell product with right balance of **performance** to **promised** lifetime

This is a useful natural tension!
Survey of “Pathologies”

Source Gate Drain

Ohmic Metal/ Semiconductor reactions

Virtual gate, Channel Degradation
Dislocation + point defect interaction
Point defects: Everywhere, but most important here
Pit/Crack: Mechanical/Chemical/Stochastic

Gate: Diffusion/Chemical

Dislocation Enhanced Diffusion

Also – catastrophic “crater” failures with no definitive location in channel

Survey of Accelerants

Ohmic Metal/Semiconductor reactions

Virtual gate, Channel Degradation
Dislocation + point defect interaction
Point defects: Everywhere, but most important here
Pit/Crack: Mechanical/Chemical/Stochastic

Gate: Diffusion/Chemical

Plus gas environment, RF environment, UV light, Acceleration by design (test structures) etc.

Also – catastrophic “crater” failures with no definitive location in channel
Survey of Open Literature

<table>
<thead>
<tr>
<th>Physics of Failure</th>
<th>Stressor</th>
<th>Failure Metric</th>
<th>Life Limiter</th>
</tr>
</thead>
</table>
| • Diffusion | • DC Electrical (I_D, V_D, V_G, V_{crit}, “semi-on”) | • DC electrical or parametric | • T_{CH}
 Negative Ea
 Low Ea (0.12-0.39)
 Mid Ea
 Multiple Ea’s, one part | |
| • Defect Percolation | • DC pulsed | | |
| • TDDDB at Gate | • RF | | |
| • Surface barrier oxidation | • RF pulsed | | |
| • Ohmic intermixing | • T_{BP} or T_{CH} | | |
| • Gate intermixing | • Pulsed Temperature | | |
| • **Critical elastic E** | • UV light | | |
| • Crack/Pitting | • Ambient gas | | |
| • Traps* | • Ambient RF | | |
| • Alloying, melting | • Use of proxy parts | | |
| • Dislocations | • Starting conditions/Processing marginality | | |
| • SBH change | | | |
| • Interface Relax. | | | |
| • Multi-Fail models | | | |
| • Unknown | | | |

Multi-dimensional space in Physics of Fill, E Depth, Type, Location, Physics of Fail
What we would like

• Well defined Physics of Failure, Stressor(s), Fail Metric(s)
 (like Si CMOS)

→ Well defined “path” to follow for reliable conclusions

This time its...
Col. Mustard,
In the Study,
Lead pipe.
Why are we not there?

BIN 1. MATERIALS/PROCESS IMMATURETY

• Large variation in degradation rate of nominally “identical” parts.
 - A “fog” that cuts across industry.
 → Rapidly getting better!

• Much larger variation across processes!
 - Secrecy/Proprietary limits sharing
 Limited distributions of new parts
 Process details, origin of parts often unknown
 - “Cutting edge” conclusions drawn from old or marginal parts!
 → HiREV University Foundry run.

If we had the luxury of starting from scratch...
 - Use modern parts
 - Minimize sharing restrictions for academic research
 - Verify findings with multiple vendors
Why are we not there?

BIN 2. TEST AND FAILURE ANALYSIS IMMATURITY

• Large variation in test protocols
 - R_{th}: IR thermal, micro-Raman, modeling
 - Random tested population or cherry-picked?
 - Each data source explores a subset of stressor parameter space.
 → HiREV role as independent tester facilitating uniform testing
 → HiREV working full statistical understanding of problem

• Failure Analysis is mostly “find once and report”, not protocol development
 - Very few “findings” use a closed loop approach (pre-post stress)
 - Little said on how the “found” defect is known to be the “real” defect!
 → HiREV working to cross-correlate FA findings and close the loop

If we had the luxury of starting from scratch...
 - Compare/set test protocols early
 - Compare/set Failure Analysis protocols early
 - Fully document for full reproducibility!
Why are we not there?

BIN 3. THE UNDERLYING PHYSICS HAS CHANGED

• Very large peak E fields, temperatures, thermal gradients.
 - Can make “nonstandard” drivers relevant.
 - Complex interplays cited in literature (i.e. drifting charged point traps).
 - Can require coupled mechanical/thermal/electrical physics.
 - Awareness of this complexity is now critical!
 - Adequacy of existing test channels and test methodology?
 ➔ HiREV working fundamental science and tool assessment
 ➔ HiREV working full understanding of the “stressor space”

• Traps, traps, traps
 - Nearly impossible to directly measure, yet a genuine issue.
 - Easy to cite, hard to quantify: density, location(s), species, conditions.
 - High dislocation density, probably here to stay
 - Wide bandgap: means traps have microseconds to many days lifetime.
 ➔ This will require closure. Verification/Validation Critical.
 ➔ HiREV working to directly quantify traps under the gate (expt. & model)
Example: HiREV Thermal Characterization

IR Thermography
- Quick look at heating uniformity
- Good for part-part variation
- Not good for absolute temperatures
- ~3-5 μm spatial resolution

μRaman
- Accurate point thermometry
- 1 μm spatial resolution
- Mapping possible
- Measures GaN or SiC temperature only; optical access limitations

Thermoreflectance
- Transient measurement with 50ns resolution
- Submicron spatial resolution
- Full device imaging
- Surface localized

Electro-Thermal Modeling
- Thermal Transients
- Best spatial resolution
- Full device to package
- Buried not an issue
- Only as good as input data \(\rightarrow\) lots of validation!
Example: HiREV Fail Analysis (FA) Characterization

Incoming Parts

STRESS

Draw

Legend: NOW IN WORKS

Incoming Parts

Multi-bias IR + Multi-bias PE + EBIC + SEM

STRESS + Parametric & Parametric Analysis

Multi-bias IR + Multi-bias PE + EBIC + SEM

TEM → Wet Etch

μ-Raman + μ-PL + AFM + Specialty (Kelvin probe, etc.)

Optional plan view FA (where to cut?)

Outgoing Parts

STRESS

Optimal Pre-Stress Characterization

Optimal Post-Stress Characterization

Down Select
Example: HiREV GaN HEMT Modeling

Electro-Thermal Physics
- Full device to package

- A Critical Link: Measurable data (electrical, etc.) \rightarrow Root Causes (E, T, T_e, traps, etc.)

- Sensitivity analyses: Understand key unknowns (bulk, interlayers, processing)

- Validation is Critical!
Conclusions

• Many GaN HEMT reliability concerns are expressed in the open literature.
 - But, with “Fog” in Data, Test Methodology, Conclusions.
 - Uncertain how much is worrisome.
 - Not appropriate either to ignore or to follow every lead!

• Gaps can largely be binned
 - Sample limited or institutional (old, proprietary parts)
 - Unfixed test/FA protocols and quality/completeness of reporting
 - Key gaps in science

• HiREV working to fill key gaps
 - Where we believe there is a “void” to fill
 - Always looking for partners to assist!

• Many thanks to the HiREV team for thoughts/feedback/guidance!
Stress Test Cost / Realism

DC Quick (V_G or V_D)

↓

DC Long

↓

RF Long Large Signal

↓

DC Pulsed, RF Pulsed, Thermal Shock, DC/RF Cryo,

Others: Radiation, UV light, Environmental (gas, RF power, ESD, …), physically relevant stress sequences, etc.
On Open Exploration vs. Guideline Driven

Good things happen when Academics ignore guidelines!
- Lots of good stuff in the open lit. not captured by specs like JEP 118.
 - Non thermal accelerants
 - Hot electrons, Critical biases, Traps and defect percolation
 - Full and time dependent role of dislocations (not going away)
 - Piezoelectricity (and Inverse PZ) will need to be addressed
 - Clouds reliability testing results
→ Need consistent application of these novel tests to relevant and modern parts for multiple vendors!

Bad things happen when Academics ignore guidelines!
- Hard to find papers on some topics (ESD, > 1 vendor).
- Time duration for parts on test not usually long enough
- Under-focus on consistency and enough data to fully replicate work
 Need better documentation, critical data being discarded!
 Need to standardize tests when possible
 Statistics important, outliers too.
→ Need to address these gaps to get work from there to here!
→ Journals practices are moving in our direction